In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.

نویسندگان

  • Michael T Butcher
  • Nora R Espinoza
  • Stephanie R Cirilo
  • Richard W Blob
چکیده

Previous analyses of ground reaction force (GRF) and kinematic data from river cooter turtles (Pseudemys concinna) during terrestrial walking led to three primary conclusions about the mechanics of limb bone loading in this lineage: (1) the femur was loaded in a combination of axial compression, bending and torsion, similar to previously studied non-avian reptiles, (2) femoral shear stresses were high despite the possession of a reduced tail in turtles that does not drag on the ground and (3) stress-based calculations of femoral safety factors indicated high values in bending and torsion, similar to other reptiles and suggesting that substantial 'overbuilding' of limb bones could be an ancestral feature of tetrapods. Because force-platform analyses produce indirect estimates of bone loading, we sought to validate these conclusions by surgically implanting strain gauges on turtle femora to directly measure in vivo strains during terrestrial walking. Strain analyses verified axial compression and bending as well as high torsion in turtle femora, with peak axial strains comparable to those of other non-avian reptiles at similar walking speeds but higher peak shear strains approaching 2000 microepsilon. Planar strain analyses showed patterns of neutral axis (NA) of femoral bending orientations and shifting generally consistent with our previous force-platform analyses of bone stresses, tending to place the anterior and dorsal aspects of the femur in tension and verifying an unexpected pattern from our force studies that differs from patterns in other non-avian reptiles. Calculated femoral safety factors were 3.8 in torsion and ranged from 4.4 to 6.9 in bending. Although these safety factors in bending were lower than values derived from our stress-based calculations, they are similar to strain-based safety factors calculated for other non-avian reptiles in terrestrial locomotion and are still high compared with safety factors calculated for limb bones of birds and mammals. These findings are consistent with conclusions drawn from our previous models of limb bone stresses in turtles and suggest that not only are turtle limb bones 'overbuilt' in terms of resisting the loads that they experience during locomotion but also, across tetrapod lineages, elevated torsion and high limb bone safety factors may be primitive features of limb bone design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna)

First, in three places in the article, the reported value of yield stress in torsion for the femur of Pseudemys concinna was too high by a factor of 2. This error occurred in Table5, in the second paragraph of the Results section entitled ‘Mechanical properties and safety factor calculations’ (p. 1196) and in the first paragraph of the Discussion section entitled ‘Femoral safety factors in turt...

متن کامل

Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna).

Studies of limb bone loading during terrestrial locomotion have focused primarily on birds and mammals. However, data from a broader functional and phylogenetic range of species are critical for understanding the evolution of limb bone function and design. Turtles are an interesting lineage in this context. Although their slow walking speeds and robust limb bones might lead to low locomotor for...

متن کامل

Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis).

In vivo measurements of strain in the femur and tibia of Iguana iguana (Linnaeus) and Alligator mississippiensis (Daudin) have indicated three ways in which limb bone loading in these species differs from patterns observed in most birds and mammals: (i) the limb bones of I. iguana and A. mississippiensis experience substantial torsion, (ii) the limb bones of I. iguana and A. mississippiensis ha...

متن کامل

Limb bone loading in swimming turtles: changes in loading facilitate transitions from tubular to flipper-shaped limbs during aquatic invasions.

Members of several terrestrial vertebrate lineages have returned to nearly exclusive use of aquatic habitats. These transitions were often accompanied by changes in skeletal morphology, such as flattening of limb bone shafts. Such morphological changes might be correlated with the exposure of limb bones to altered loading. Though the environmental forces acting on the skeleton differ substantia...

متن کامل

An investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests

The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2008